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ABSTRACT 

The Pekeris theory of normal mode propagation 

of explosion sound in two liquid layers is extended to 

include the case of a solid bottom. Curves giving 

phase velocity, group velocity, amplitude, vertical 

pressure distribution as a function of frequency are 

presented. The relative merits of geophones and hydro¬ 

phones for underwater seismology and the best depth for 

each type of instrument are discussed in the light of 

the theory. The characteristics of an incoming signal 

are described. 



INTRODUCTION 

The normal mode theory of sound propagation 

in two and three liquid layers was given by Pekeris^ 

who solved the problem for waves originating at an im¬ 

pulsive point source located in the first layer. Pekeris 

showed conclusively that his solution fully explained 

most of the characteristics of explosive sounds in 

shallow water observed by Worzel and Ewing*. 

The plane wave solution for sound propagation 

in three liquid layers in which the speed of sound in 

the intermediate layer is less than that in the topmost 

layer was investigated by Press and Ewing^. 

The treatment of the ocean bottom as a liquid 

was adequate for the shallow water data to which Pekeris 

applied it since the penetration into the bottom is ap¬ 

proximately equal to the depth of water which usually 

involves only unconsolidated sediments. When one deals 

with sound propagation in the deep ocean or in shallow 

water underlain by rock bottom, it becomes necessary to 

consider the bottom as an elastic solid. Several of 

1. C. L. Pekeris, Theory of Propagation of Explosive 
Sounds in Shallow Water, in Propagation of Sound 
in the Ocean, Mem. No. 27, Geol. Soc. Amer., 1940. 

2. J. L. Wbrzel and Maurice Ewing, Explosive Sounds in 
Shallow Water, in Propagation of Sound in the 
Ocean, Mem. No. 27, Geol. Soc. Amer., 194®. 

3. Frank Press and Maurice Ewing, Low Speed Layer in 
Water Covered Areas, Geophysics, Vol. 13, No. 3, 
pp. 404-420, 1940* 



our recent papers have dealt with certain aspects of 

propagation in a liquid layer overlying an elastic 

solid, and in the present paper the Pekeris theory is 

extended to include the case of normal mode sound propa¬ 

gation from an impulsive point source in a liquid layer 

overlying a semi-infinite elastic solid. Certain deri¬ 

vations covered in the liquid bottom theory will not be 

repeated here, but reference will be made to the paper 

of Pekeris. 

Early work by Stoneley^ and Sezawa^ dealt 

with the effect of the ocean on the transmission of 

seismic waves across a solid ocean bottom. Stoneley 

considered plane waves and calculated several values of 

phase and group velocity for long periods. Sezawa ob¬ 

tained an approximate solution for the propagation of 

cylindrical waves having great length compared to the 

depth of water. Lee^ calculated the amplitudes of Ray¬ 

leigh waves for plane waves transmitted through an elas¬ 

tic solid covered by a superficial surface layer, assum¬ 

ing several values for the elastic constants of the two 

media. 

4. Robert Stoneley, The Effect of the Ocean on Rayleigh 
Waves, Mon. Not. Roy. Astron. Soc., Geophys. Suppl. 
Vol. 1, pp. 349-356, 1926. 

5. Katsutada Sezawa, On the Transmission of Seismic Waves 
on the Bottom Surface of an Ocean, Bull. Earth. 
Inst. Tokyo, Vol. 9, Pt. 2, pp. 115-143, 1934. 

6. A. W. Lee, Further Investigations of the Effect of 
Geological Structure upon Microseismic Disturbance, 
Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 
Vol. 3, pp. 23S-252, 1934. 



Scholte^ gave a theory for the combined effects 

of gravity and compressibility in a layer of water in con¬ 

tact with an elastic solid bottom, Scholte^ emphasis 

was on energy transfer from the atmosphere to the ocean 

bottom and he did not deal with group velocity or pay 

particular attention to transmission in a horizontal 

8 
direction. Press and Ewing presented curves of phase 

and group velocity for the first and second modes of 

motion of plane waves in a liquid layer superposed on a 

o 
solid bottom and later extended the theoretical work 

of Lamb^ and Pekeris^ to include the case of an impul¬ 

sive point source of compressional waves located within 

the solid bottom. 

THEORY 

Steady State Solution 

Consider the propagation of elastic waves 

through the system consisting of a liquid layer of thick¬ 

ness H, density and compressional wave velocity Vp 

7. J. G. Scholte, Over Het Verband Tussen Zeegolven en 
Microseismen, I and II, Verslag Ned, Akad. Wet,, 
Vol, 52, pp. 669-683, 1943. 

8. Frank Press and Maurice Ewing, A Theory of Micro- 
seisms with Geological Applications, Trans, Amer. 
Geoph. Union, Vol. 29, No. 2, pp. 163-174, 1948. 

9. Frank Press, Maurice Ewing, and Ivan Tolstoy, The 
Airy Phase of Shallow Focus Submarine Earthquakis, 
Columbia University Technical Report on Seismol¬ 
ogy No. 3 (also in press Bull. Seis. Soc. Amer.). 

10. Horace Lamb, On the Propagation of Tremors over the 
Surface of an Elastic Solid, Phil. Trans., Roy. 
Soc. Lon., Series A, Vol. 203, pp. 1-42, 1904. 

. C. L. Pekeris, loc. cit. 11 



superposed upon an infinitely thick, solid bottom of 

density , compressional wave velocity and dis- 

tortional wave velocity • A, is the incompressibility 

of the liquid and , JU^ are Lame*s constants for the 

bottom, and are related to the elastic wave velocities 

as follows: 

The cartesian coordinate system is chosen with the x and 

y axes in the liquid surface and the z axis vertically 

downward* We will use the coordinates z and r = yx^+y^ 

and denote the corresponding displacements by q and w 

respectively. The subscripts 1 and 2 refer to the liquid 

layer and solid bottom respectively. 

Simple Hamonic Point Source within Liquid Layer 

We wish to determine the velocity potential (fi, 

from which the component displacements q^ and w^ and 

the pressure p^ due to a point source of compress ional 

waves at r = 0, z - d can be obtained. In particular 

we will seek the normal mode solutions which predominate 

at large distances from the source. 

12 
We follow the procedure of Lamb in assuming 

(CO "t „ 
simple harmonic motion £ and introducing the functions 

12. Horace Lamb, loc. cit. 



{p (r,z) and (r,z) defined by the equations: 

% = difi,/6r 

w, = faz 

% = tifr/jr + 6J%pr<h 

ur^-^^jSz + Ja^L/dza -f M*/#? ifA 

The vertical stress pzz and the tangential 

stress pzr can be expressed in terms of q, w, If , Lp 

and the elastic constants as follows: 

= A VX<f + 2/<dur/^z:.. ^ 

^zr — /A (d fid Z 4- c) l*s'/dr') - -- -- -- - --(A) 

It is required that the functions Lp and <p 

satisfy the wave equations (reduced for simple harmonic 

motion): 

(va + u)“V) if, . (5) 

( va O --(6) 

( Va + «J*/4) % = 0-(7) 

JV^r* + ^/,yr 4dy^za where 



Solutions of (5), (6), and (7) must satisfy the boundary 

conditions: 

(H^)= O oZ z = o --(?) 

C^zx), - ('fz-z)3L °rf z=H-' ---(?) 

(•€^4=0 2.= H-(/0) 

arri<4 at 2- H-(//) 

The meaning of the primed symbols is given in the next 

paragraph. 

Our procedure will be to first obtain the 

solutions to the problem where a periodic pressure is 

applied to the entire plane z z d symmetrically about 

the z axis and then to pass to the case of a point source 

utilizing the Fourier-Bessel integral. We shall repre¬ 

sent a point source located at r ~ 0, z - d by requiring 

continuity of pressure in the plane z = d and continuity 

of vertical displacement w everywhere in the same plane 

except at the point source where the fluid above and be¬ 

low the source moves in opposite directions, the discon¬ 

tinuity in w here becoming proportional to a function 

F(r) which vanishes everywhere except at r : 0 where it 

becomes infinite in such a manner that its integral over 

the plane z s d is unity. It is convenient to divide 

the liquid layer into regions above and below this plane 

indicated by primed and unprimed symbols respectively. 



9. 

Typical solutions of (5), (6), and (7) are of 

the form: 

V? = ftyOM*. (?z) J0(ki-) .(/a) 

¥}* - £B/<*'v'-(Vz') + C <>4(fz)] Jo(t=r)..(i3) 

'Pa = De1JIJ0(Kr)----■ (m) 

V Ee-fz Jc(Kr).-.-.<7*9 

where the separation constants %t *>), $t obtained 

by substituting (12) - (15) in (5) - (7) are 

; V*, «»*,«/«<» , J = /c’wy/J#.^ 

£,°?; J are positive real or negative imaginary follow¬ 

ing the convention adopted by Pekeris^. 

These solutions must satisfy two additional 

boundary conditions at the plane z = d. We require con¬ 

tinuity of pressure 

(#*),=&*)', oXz-.J .-.07) 

and a discontinuity in vertical displacement given by 

(jft/dz )-(d<S,/jz )'- aZJa(«r) - -.(/?) 

the fluid above and below the plane moving in opposite 

directions. 

13# C. L. Pekeris, loc. cit 



The expression for ip, is the general form. 

ip, has been chosen to satisfy the first boundary con¬ 

dition (8). The functions <pA and (//^ are taken to 

decrease exponentially with depth since we are interested 

in solutions for which the loss of energy by refraction 

into the bottom is zero. 

The constants A, B, C, D, E determined by sub¬ 

stituting equations (12) - (15) in the boundary condition 

equations (9) - (11) and (17) - (18) are as follows: 

XL 
'>} 

- (ZK-u>y&fJ H)' s 



C = 

We now generalize the discontinuity in w by 

means of the Fourier-Bessel integral: 

® 00 

/>) = jjjKr)K<lK Cfau-(zh) 

° 

and we choose ^"(A) to vanish for all but infinitesimal 

values of X in such a manner that its integral over the 

plane z - d is unity, or 



12. 

oo 

(*s) 

K d < 
Thus if we take ~ a 71 in the solutions (12) - (15) 

and (19) - (23) and integrate with respect to K from 0 

to 00 we obtain solutions which satisfy the conditions 

at the boundaries and meet the additional requirements 

of a point source, namely, continuity of pressure in the 

plane z = d and continuity of vertical displacement 

everywhere in this plane except at r - 0 where the dis¬ 

continuity becomes proportional to F(r) ~ J J0(Kr) K d K 
~o 

which becomes infinite in such a way that its integral 

over the plane z - d is unity. 

The formal solutions for a periodic point source 

are therefore: 

oo 

W£z) 

O 

P, U)** 0) 

k1y- 

O^Zid 

.M 

. /ru, 

4 4’? 
Pi) 

d <: 2 £ W 



00 

lp^-leLUjt JJkMk 
/QMV M 

? 

P, ^ (3 yi_ uf\ * 

Pa. Ol } £ 

~ lip*] <W*H) 

z>H 

S4l ?e 

4 4" ~ f J«(?h) 

z^ H 

Integrals of this general type have been evalu¬ 

ated by Lamb^*, Nakano^, Sezawa^, and Pekeris^. The 

procedure is to transform the path of integration to the 

complex K -plane. The solutions can then be expressed 

as the sum of the residues of the integrands and two 

integrals along branch lines corresponding to the branch 

points K-w/o( a. and • The residues 

«, / l^ 
which diminish as P give the normal mode solutions, 

-SL 
whereas the branch line integrals diminish as P , and 

become negligible for large r. 

14* Horace Lamb, loc. cit. 
15. H. Nakano, On Rayleigh Waves, Jap. Journ. Astron. and 

Geophys., Vol. II, No. 5, PP* 233-326, 1925. 
16. Katsutada Sezawa, Love-Waves Generated from a Source 

of a Certain Depth, Bull. Earth. Inst. Tokyo, 
Vol. 13, Pt. 1, pp. 1-17, 1935. 

C. L. Pekeris, loc. cit. 17. 



Following this procedure and neglecting for 

the while the contributions of the branch line integrals, 

we find for large values of r: 

J/_i_ ^nz)H [g4*^“&K"^#/) J 

f" k |I g ||HM) ~ [«- W -(^n- $ f] <**&«)} 

Corresponding expressions for (/> ; (/a. and ^ are 

readily obtainable. The subscript n indicates that the 

quantity is to be evaluated at k z kn, where kn are the 

roots of the period equation obtained by setting the 

denominators of (26) - (29) equal to zero, namely, 

\kKz)f-(*•(*£)*] = O 

From the exponential factor in (30) it can be 

seen that the phase velocity cn can be expressed by 

C* = w/ Kw “ * ~ • ~ --- — - - --- - - (32) 

and the normal mode solutions can be written in their 

final form: 

\Jkz 

Mujt-Knr-'XlH) v , . 

£ -(33) 

O^z.^ H 



ipA= 4? r?r 
H Jtrr 

|r, l/ K* M 

z>ht 

V W¥ _.... (U, 
z^H 

UJ&LSUt— 

-r P‘ A >, U 
$,= — £J£l Ik <vx 

\JCXA'-/ j fafnfQ 

&.&(*-cW««n 

-H 

iW=7 J j 
-- -.---fa) 

_ ^ C1}; 
$ - __ ^ ai g„ 

w 

--(**) 

/-<=%<>~l r>„W/-cv^ 
c>/-/ J [ (c^/v^-i) 

-4 JT-c*//3? J7=cy« X 
JL 

A 
L2 

V/- y/3*-afr-cy^jjc^^H)./if) 
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CLvco( 

?„ = K-1 J CVk1--/ 

??„= kmJ/-cv^ ' 

?*. = *« Ji-cy#* 

Equation (29) can be rewritten in the dimen¬ 

sionless form: 

ZtutfaHjcyv?-/) = il~cX/4t -(* ft cy/-cy*}l 

The discussion of the previous equation given 

in earlier papers (footnotes 8 and 9) will be repeated 

here. 

Ibis equation defines an implicit relationship 

C 
between the frequency -f ~ and the phase velo¬ 

city c , with the elastic constants of the acoustic 

system as parameters. It is evident that the wave sys¬ 

tem defined by (33) - (35) will be attenuated for 

complex, the degree of attenuation depending on the 

magnitude of the imaginary component. The energy loss 

associated with damped propagation is due to the refrac¬ 

tion of waves from the liquid layer into the solid bottom. 

For the case which is considered in this 

paper, undamped propagation will occur for the cases: 

- - - M 

-c‘kf -M 



1 <=<2. >/3x 5* c V, 

IC <*a >/2a > Vi ^ C 

Only case I is considered here. 

From the form of the period equation (41), it 

can be seen that kjjH (and hence frequency) is a multiple 

valued function of phase velocity, each value belonging 

to a distinct mode of propagation. The summations indi¬ 

cated in (31) - (33) are to be carried out over all the 

modes n - 1 to n =0o . The amplitude factors 

and li Jk 
dinr*1 Jkz 

> 

give the strength of excitation in 

the first and second layer for each mode as a function 

of the frequency. A plot of $ for the first and second 

modes appears in Figure *1 as a function of a dimen¬ 

sionless parameter proportional to frequency. 

The factor shows the influ¬ 

ence of the depth of the source on the amplitudes of 

the different modes. The vertical pressure distribution 

for each mode is given by the factor which 

is plotted in Figure # for the first two modes. 



18 

It can be shown^® that the period equation (41) 

expresses the condition of constructive interference be¬ 

tween plane waves undergoing multiple reflection in the 

liquid layer at angles of incidence beyond the critical 

angle of reflection , where JUM.&C -Vi//2i • With 

this simplified point of view each mode represents a 

different order of interference and the disturbance at 

a distant point is obtained by the superposition of 

waves arriving at the point along the oblique ray paths 

(defined by the angle of incidence Q ) for which con¬ 

structive interference occurs. For the case of plane 

waves the wave number k in the previous discussion can 

be expressed by K~ (27///J where 1 is the 

wavelength measured along an oblique ray path. 

Generalization for an Arbitrary Pulse 

In a dispersive medium in which an arbitrary 

initial disturbance occurs, the energy associated with 

each period is known to propagate with the group velo¬ 

city given by the formula 

U= c +(km)~).- - &*) 

18. Frank Press and Maurice Ewing, A Theory of Micro¬ 
seisms with Geological Applications, Trans. Amer. 
Geoph. Union, Vol. 29, No. 2, pp. 163-174, 1948* 



The period equation (41) was used to calculate 

numerically the phase velocity as a function of kH. The 

group velocity was subsequently determined from equation 

(42), using the values of <fe/a/(*W) obtained by 

numerical differentiation. The results of these compu¬ 

tations for C ^ (case I above) are shown in 

Figures /, 2., 3 , where c/v^ and U/v^ are plotted 

as functions of the dimensionless parameter H/£ - 

hHc/iHV, - It-f/Vi for three cases *.) Px 

&=3vU t) ofe=(/5/32; 6x-. )&/!>:*. 0, , /3x=/s 

which represent in an approximate way the conditions for 

basaltic, granitic and sedimentary bottoms for which 

-yU or Poissons constant <r = *2^ . For each 

case the first two modes are plotted. 

A study of these curves reveals that the 

phase and group velocity of the first mode (n s 1) ap¬ 

proach the velocity of Rayleigh waves ( ) 

in the bottom layer as Y —> o or as the wavelength 

becomes very long in comparison to the thickness of the 

first layer. As c/v1 and 1, Y approaches a 

limiting value. For C/V, < / (case II above) the propa¬ 

gation reduces to that of a boundary wave (Stoneley wave) 

along the bottom interface. In the second mode (n s 2) 

the phase and group velocity equals the velocity of 

shear waves in the bottom ( c/k; : ) for a 

limiting value of Y corresponding to a cut-off 



frequency "below which k is complex and damping occurs. 

For c and TJ close to v^ the frequencies "become infinitely 

large. Higher modes of propagation (n " 3* • • •) 

exist, each having the same cut-off Velocity but increasingly 

large cut-off frequencies. In general the frequencies of 

the higher modes corresponding to a given phase or group 

velocity become progressively higher. The group velocity 

of the first and second modes are further characterized by 

the existence of stationary values, the importance of which 

will be discussed in a later paragraph. 

Dispersion curves giving frequency as a function 

of arrival time are given in Figures 4, 5» 6 for cases a, 

b, and c respectively. 

Having obtained the solution for the steady 

state propagation of simple harmonic compressional waves 

originating in a point source located within the liquid 

layer, it remains yet to obtain the solution for an ar¬ 

bitrary initial disturbance. If the time variation of the 

initial disturbance at the source is f(t) represented by 

its Fourier transform 

.. - - . fv%) 

' H?71 u * f(uj) cJUJ - ----- . 
- -' (?*) 

- 09 

the potential^? can be written: 

00 

H [P(tfMtfJ.- ■ ■ -N 



The corresponding expressions for ^ and lcan be 

readily obtained in the same manner. In (4^) 1^ is a 

function of u) through (32) and (41). 

We follow Pekeris in representing the initial disturbance 

created in an explosion as follows: 

■ffe) =■ eT°"r & 

~ ° ~£ < G 

where 
oo 

Tn 

i U>t 
_ cl Cd 

WTTiO) ) 
/ 

CT-h CU) 

-1X3 

and 

00 

* < 
H \Z7fr 

-oo 
0 6 24- ^ 

CT" is a parameter that depends primarily on the size 

of the explosive charge. 

To evaluate these integrals we use Kelvin^ 

approximate method of stationary phase. This method as¬ 

sumes that the exponential term is a rapidly oscillating 

function of a) over the range of integration, whereas 

the remainder of the integrand is a slowly varying 



22. 
function of (A . The principal contribution to the 

integral therefore occurs at the points for which 

— O > where /(u)) r (lO ^ — Kr> f' — 71J1/) where 

An expansion of {(^) about these points of stationary 

phase is made and formulae for the approximate evalua¬ 

tion of the integrals and criteria for the validity of 

19 20 
the approximations are obtained. Havelock , Jeffreys , 

21 22 
Lamb , and Pekeris derive and discuss the appropriate 

formulae. In evaluating (48) we make use of the equa¬ 

tions and computations as given by Pekeris and obtain: 

i (uict - *v> r- 'nM i */v) 

Y,~ttr f ri 
L e/ij u‘in j * 

where the upper or lower sign in the exponential term 

is to be taken according as positive or 

are evaluated from the 

phase and group velocity curves of each mode for the 

values of r and t which satisfy r/t - U. Equation (49) 

is valid provided r is large and t is sufficiently re¬ 

moved from the value t = r/U where U denotes a mini- 

mum or maximum value of group velocity. To complete the 

solution we add to (49) its complex conjugate, since, as 

19. T. H. Havelock, "The Propagation of Disturbances in 
Dispersive Media", Cambridge Tracts in Mathematics 
and Mathematical Physics No. 17, Cambridge Univer¬ 
sity Press, 1914. 

20. Harold Jeffreys, "On Surface Waves of Earthquakes", 
Mon Not. Roy. Astron. Soc., Geophys. Suppl., 
Vol. 1, pp„ 282-293, 1926. 

21. Horace Lamb, "Hydrodynamics", Cambridge University 
Press, 6th Ed., pp. 395-398, 1932. 

C. L. Pekeris, loc. cit. 22. 



23. 

Pekeris shows, there are two stationary points =£ c<J6 

where % f^ u) - O and a solution similar to 

(49) except for a reversal in sign of the phase of the 

exponential term would have been obtained had we assumed 

initially a time factor instead of €. 

Thus we obtain 

....(so) 
Hr < rv _JL_ AM!* /vv 1 ^ r> i_ J uiv, / x 

o < H 

for > O and 

tp r m ^ Qd, foot- Knr-^'/^j-Va] T (K\ JWe z) . - 

Hr n rx —!_ /jM*L|(<r»4(0*)T,t ' 
L=/v. uvv*Id* l[ JJ„ 

-’-(*) 

o„<z^ H 

for <=iyZyi < o. 
d d" 

For t close to t = r/Uffl, where the group 

velocity is stationary, a further approximation involving 

the second derivative as the expansion of ffa) i» 

required in order to evaluate (45), giving for large 

ranges r: 

y .(«) 

^ Vfrr^J.IA^KhA ll f -tL TT 1 

o^z.cH 



where 

£(v) = y‘h [J ,,>) ■+ 

fM = v'/j [I-*M - I,AM] 

ft < r/u*,,,, 

It >r/Um*x 

t > r/umm 
t < r/Uwttx 

Z.-il ^1* = _ v^_ JU 
H dw1 avu3- jy - - - - 

OVL^ 

v- ‘jjjL. (S) f.¥i_£ V/a 
3|/T7z ( H / ' u "" Um I . 

Pekeris has given the name Airy phase to waves associ¬ 

ated with a maximum value. The factor E(v) represents 

the envelope of the Airy phase and is plotted in Figure 9 

from the data given by Pekeris. It is to be noted that 

the Airy phase amplitude falls off only as in con¬ 

trast to the r”^ decay of waves travelling at other 

values of group velocity. 

The relative amplitudes of the velocity poten¬ 

tial when both the charge and hydrophone are on 

bottom can be discussed with the aid of Figure 10 

where the amplitude factor 

£,(«*) A*? (fnH) 

rr 1 Lt/v, uy*» I j> IJn 

obtained by setting d = z = H in equations (50) - (51) 

(i.e. assuming charge and receiver on bottom)is plotted 

- («) 

--- &) 

■ - (ss) 

' • 



as a function of in the first and second inodes 

for case a in which , /32 - 3 V, , 

The relative amplitudes of the Airy phases at the time 

t - r/Um have been computed for the same conditions and 

in the same units as G from the factor 

obtained from equation (52), The magnitudes of A for 

the cases r - 200H and r ■ 2000H have been computed and 

are plotted in Figure/O • Dispersion curves relating 

the frequency of waves with arrival time are given in 

Figures 4-6^ so that amplitudes can be obtained as a 

function of frequency or travel time. 

DISCUSSION OF THE NORMAL MODE SOLUTIONS 

Whether the source is located within the liquid 

layer or the solid bottom, the dispersion in the normal 

mode solutions is identical and many of the character¬ 

istics of incoming signals for both problems are similar. 

The discussion given in an earlier paper which deals 

with a source within the bottom J is in the large part 

applicable and will be repeated here with the slight 

modification required for a source located within the 

liquid layer. 

23. Frank Press, Maurice Ewing, and Ivan Tolstoy, loc. 
cit. 



In an earlier section the formal steady state 

solutions (26) - (29) were expressed as the sum of the 

residues of the integrands and two integrals along 

branch lines corresponding to the branch points C=°^sl 

and C = /?a. • The residues lead to the normal mode 

solutions which predominate at large distances because 

they siminish only as C~,lz~ . Now the normal mode 
\ 

solutions vanish at c=U- ft a- and do not exist for 

C >ft2 . In this region the branch line integrals 

contribute waves travelling with the speed of compres- 

sional and shear waves in the bottom, diminishing 

rapidly in amplitude with distance as l/r^. 

At a time >rJftx after the initial impulse 

at the source (i.e. immediately after the arrival of 

shear waves) the normal mode contributions begin, 

gradually increasing in amplitude to become the predomi¬ 

nant waves, providing r is large. The wave motion in 

the first two modes due to a distant impulsive point 

source of compressional waves having a moderately broad 

spectrum and located within the liquid layer can be 

obtained from Figure / o as a function of frequency, 

and from Figures and Jo as a function of arri¬ 

val time. In the first mode the group velocity approaches 

the velocity of Rayleigh waves ( = ,9199 ft x ) as 

o • The first arrivals consist of low frequency 

Rayleigh waves whose amplitudes increase gradually from 



zero as the frequency increases from zero rapidly at 

first and then gradually. At the time t = r/v^ a high 

frequency wave arrives travelling with the speed of sound 

in water. The group velocity and dispersion curves show 

an upper frequency limit for these waves. For frequen¬ 

cies above this limit the solutions reduce to boundary 

waves propagated along the interface in a manner anala- 

gous to Stoneley waves. According to Figures V and 10 

the amplitudes of these waves are zero at t - r/v^ 

but increase to large amplitudes shortly thereafter. 

For t > r/v, the high frequency and low 

frequency branches of the group velocity curve contribute 

waves which arrive simultaneously and approach each other 

in frequency until they merge to form an Airy phase at 

a time corresponding to propagation at the minimum value 

of group velocity. The Airy phase amplitude of the first 

mode has been calculated from equation (56) and is 

plotted in Figure 10 for the two cases r * 200H and 

r - 2000H. It is seen that Airy phase waves have large 

amplitudes relative to waves travelling at other values 

of group velocity, the amplitude of the Airy phase in¬ 

creasing with range as r1^ relative to waves travelling 

at other values of group velocity. 

The second mode begins with waves arriving 

with a cut-off frequency at the time ^ ~ 

The amplitudes are zero at the onset and thereafter in¬ 

crease as the frequency increases. At the time t - r/v^ 
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high frequency waves ( y -> 00 ) arrive travelling 

with the speed of sound in water. The amplitude of 

these waves is zero at the onset but increases rapidly 

thereafter. . For t > r/K the two arrivals correspond¬ 

ing to the low and high frequency branches of the group 

velocity curve of this mode approach each other and 

merge at a minimum value of group velocity, producing 

the large amplitude waves of an Airy phase. The second 

mode Airy phase occurs at higher frequencies and has 

somewhat smaller amplitudes than that of the first mode. 

It is to be noted that a maximum value of 

group velocity is present in the second mode. Ordinarily 

one might expect large amplitude waves to occur here, 

but the excitation function JJk) (Figure 7 ) almost 

vanishes for the value of kH corresponding to this sta¬ 

tionary value of group velocity and the resultant am¬ 

plitudes show only a minor increase. 

From equations (2), (3), (50), (51) it can be 

seen that the factor gives the vertical 

variation of pressure and horizontal displacement and 

0^- (S*7-) gives the vertical variation of vertical 

displacement in the liquid layer. Similarly the factors 

*0 give# the vertical variation of stress and 

displacement in the bottom layer. Nodes of pressure 

correspond to antinodes of vertical displacement and 

vice versa. In Figure $ the vertical variation in 

amplitude of pressure in the liquid layer is presented 

as a function of Y for the first two modes. 



The wave motion at a point is obtained by the 

superposition of the contributions of all inodes. Our 

discussion thus far has been limited to the first two 

modes. The frequencies of the higher modes correspond¬ 

ing to a given value of group velocity become progress¬ 

ively larger. In addition, the contributions of the 

high frequency higher modes will be cut down because of 

their greater susceptibility to scattering by an irregu¬ 

lar bottom. It is only with a low pass receiver system 

however that a record uncomplicated by the contributions 

of the higher modes can be obtained. For a more detailed 

discussion of this point, the reader is referred to the 

24 
paper of Pekeris. 

APPLICATION TO REFRACTION SHOOTING IN WATER COVERED AREAS 

From the theory just presented a number of 

important conclusions can be drawn concerning the propa¬ 

gation of explosion sound over large ranges in water 

covered areas. 

l) For solid bottoms, the amplitudes of waves 

travelling with the speed of compressional waves in the 

bottom will be.relatively small. It is only after the arrival 

of the first shear waves that large amplitude waves ap¬ 

pear. The shear waves begin with a limiting or cut-off 

frequency which is characteristic of the deptji of water 

and the elastic constants of the bottom. For bottoms 

24. C. L. Pekeris, loc. cit. 



which can be treated as liquid, waves having appreciable 

amplitudes appear shortly after the arrival of the bottom 

compressional or ground waves. These ground waves begin 

with a cut-off frequency in a manner analagous to the 

shear waves of the solid bottom theory. 

2) For a solid bottom a train of very low 

frequency waves ( ^-*0 ) travelling with the speed of 

Rayleigh waves in the bottom arrives. These waves in¬ 

crease in frequency and amplitude with increasing time. 

There is no analagous arrival in the liquid bottom theory. 

3) For both the liquid and solid bottom theory 

a high frequency wave travelling with the speed of sound 

in water arrives riding on a low frequency "rider11 wave. 

The frequency of the water waves shows a marked decrease 

with time. For the liquid bottom the amplitude of the 

water wave gradually increases with time. For the solid 

bottom the water waves rise to large amplitudes immedi¬ 

ately after they arrive and then fall off somewhat. 

4) For both the liquid and solid bottom 

theory the water w^ves and rider waves merge to form a 

train of waves of large amplitude which is known as an 

Airy phase. The frequency of the Airy phase is determined 

by the depth of water and the elastic structure of the 

bottom. The velocity of the Airy phase depends only on 

the elastic constants in the bottom. 



5) The response of a hydrophone sensitive to 

pressure changes and a geophone sensitive to the verti¬ 

cal velocity of a water particle will vary with depth 

because of the vertical standing wave pattern shown in 

Figure F * For any given mode and frequency the ideal 

location of a hydrophone is at a pressure antinode and 

the ideal location of a geophone is at an antinode of 

vertical displacement. Antinodes and nodes for pressure 

correspond respectively to nodes and antinodes for ver¬ 

tical displacement (or velocity). With the use of 

curves such as those of Figure 8 the vertical loca¬ 

tion of a receiver for peak response at a given frequency 

can readily be obtained* 

In all water covered areas where refraction 

shooting is undertaken, layering in the bottom occurs 

and our assumption of an unstratified bottom is indeed 

an over-simplification* If the thickness of the first 

bottom layer is of the order of several times the water 

depth, the above theory should be applicable to a fair 

degree of approximation in the interval 
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VERTICAL PRESSURE DISTRIBUTION AS A FUNCTION OF & 

Figure 8. Vertical pressure distribution in the first and second 
inodes for case a. 
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Figure 10. Amplitude functions in the first and second mode for 
case a. The circled points give the amplitude of the 
Airy phases at the distances indicated. 
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